- Added a new SVG file `undraw_docusaurus_tree.svg` to the static images directory for enhanced visual representation. - Created a `tsconfig.json` file to improve TypeScript support and editor experience, extending from the Docusaurus base configuration.
13 KiB
sidebar_position
sidebar_position |
---|
1 |
Architecture Overview
DebrosFramework is designed with a modular architecture that provides powerful abstractions over OrbitDB and IPFS while maintaining scalability and performance. This guide explains how the framework components work together.
High-Level Architecture
┌─────────────────────────────────────────────────────────────┐
│ Your Application │
├─────────────────────────────────────────────────────────────┤
│ DebrosFramework │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Models │ │ Queries │ │ Migrations │ │
│ │ & Decorators│ │ System │ │ System │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Database │ │ Shard │ │ Relationship│ │
│ │ Manager │ │ Manager │ │ Manager │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Pinning │ │ PubSub │ │ Cache │ │
│ │ Manager │ │ Manager │ │ System │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ OrbitDB Layer │
├─────────────────────────────────────────────────────────────┤
│ IPFS Layer │
└─────────────────────────────────────────────────────────────┘
Core Components
1. Models & Decorators Layer
The foundation of DebrosFramework is the model layer, which provides:
- BaseModel: Abstract base class with CRUD operations
- Decorators: Type-safe decorators for defining models, fields, and relationships
- Model Registry: Central registry for model management
- Validation System: Built-in validation with custom validators
// Example: Model definition with decorators
@Model({
scope: 'user',
type: 'docstore',
sharding: { strategy: 'hash', count: 4, key: 'userId' },
})
class Post extends BaseModel {
@Field({ type: 'string', required: true })
title: string;
@BelongsTo(() => User, 'userId')
user: User;
}
2. Database Management Layer
Handles the complexity of distributed database operations:
Database Manager
- User-Scoped Databases: Each user gets their own database instance
- Global Databases: Shared databases for global data
- Automatic Creation: Databases are created on-demand
- Lifecycle Management: Handles database initialization and cleanup
Shard Manager
- Distribution Strategy: Distributes data across multiple databases
- Hash-based Sharding: Uses consistent hashing for data distribution
- Range-based Sharding: Distributes data based on value ranges
- User-based Sharding: Dedicated shards per user or user group
// Example: Database scoping
@Model({ scope: 'user' }) // Each user gets their own database
class UserPost extends BaseModel {}
@Model({ scope: 'global' }) // Shared across all users
class GlobalNews extends BaseModel {}
3. Query System
Provides powerful querying capabilities with optimization:
Query Builder
- Chainable API: Fluent interface for building queries
- Type Safety: Full TypeScript support with auto-completion
- Complex Conditions: Support for complex where clauses
- Relationship Loading: Eager and lazy loading of relationships
Query Executor
- Smart Routing: Routes queries to appropriate databases/shards
- Optimization: Automatically optimizes query execution
- Parallel Execution: Executes queries across shards in parallel
- Result Aggregation: Combines results from multiple sources
Query Cache
- Intelligent Caching: Caches frequently accessed data
- Cache Invalidation: Automatic cache invalidation on updates
- Memory Management: Efficient memory usage with LRU eviction
// Example: Complex query with optimization
const posts = await Post.query()
.where('userId', currentUser.id)
.where('isPublic', true)
.where('createdAt', '>', Date.now() - 30 * 24 * 60 * 60 * 1000)
.with(['user', 'comments.user'])
.orderBy('popularity', 'desc')
.limit(20)
.cache(300) // Cache for 5 minutes
.find();
4. Relationship Management
Handles complex relationships between distributed models:
Relationship Manager
- Lazy Loading: Load relationships on-demand
- Eager Loading: Pre-load relationships to reduce queries
- Cross-Database: Handle relationships across different databases
- Performance Optimization: Batch loading and caching
Relationship Cache
- Intelligent Caching: Cache relationship data based on access patterns
- Consistency: Maintain consistency across cached relationships
- Memory Efficiency: Optimize memory usage for large datasets
// Example: Complex relationships
@Model({ scope: 'global' })
class User extends BaseModel {
@HasMany(() => Post, 'userId')
posts: Post[];
@ManyToMany(() => User, 'followers', 'following')
followers: User[];
}
// Load user with all relationships
const user = await User.findById(userId, {
with: ['posts.comments', 'followers.posts'],
});
5. Automatic Features
Provides built-in optimization and convenience features:
Pinning Manager
- Automatic Pinning: Intelligently pin important data
- Popularity-based: Pin data based on access frequency
- Tiered Pinning: Different pinning strategies for different data types
- Resource Management: Optimize pinning resources across the network
PubSub Manager
- Event Publishing: Automatically publish model events
- Real-time Updates: Enable real-time application features
- Event Filtering: Intelligent event routing and filtering
- Performance: Efficient event handling with batching
// Example: Automatic features in action
@Model({
pinning: { strategy: 'popularity', factor: 2 },
pubsub: { publishEvents: ['create', 'update'] },
})
class ImportantData extends BaseModel {
// Data is automatically pinned based on popularity
// Events are published on create/update
}
6. Migration System
Handles schema evolution and data transformation:
Migration Manager
- Version Management: Track schema versions across databases
- Safe Migrations: Rollback capabilities for failed migrations
- Data Transformation: Transform existing data during migrations
- Conflict Resolution: Handle migration conflicts in distributed systems
Migration Builder
- Fluent API: Easy-to-use migration definition
- Validation: Pre and post migration validation
- Batch Processing: Handle large datasets efficiently
- Progress Tracking: Monitor migration progress
// Example: Schema migration
const migration = createMigration('add_user_profiles', '1.1.0')
.addField('User', 'profilePicture', {
type: 'string',
required: false,
})
.transformData('User', (user) => ({
...user,
displayName: user.username || 'Anonymous',
}))
.addValidator('check_profile_data', async (context) => {
// Validate migration
return { valid: true, errors: [], warnings: [] };
})
.build();
await migrationManager.runMigration(migration.id);
Data Flow
1. Model Operation Flow
User Code → Model Method → Database Manager → Shard Manager → OrbitDB → IPFS
↑ ↓
└─── Query Cache ← Query Optimizer ← Query Executor ←──────────────────
2. Query Execution Flow
- Query Building: User builds query using Query Builder
- Optimization: Query Optimizer analyzes and optimizes the query
- Routing: Query Executor determines which databases/shards to query
- Execution: Parallel execution across relevant databases
- Aggregation: Results are combined and returned
- Caching: Results are cached for future queries
3. Relationship Loading Flow
- Detection: Framework detects relationship access
- Strategy: Determines lazy vs eager loading strategy
- Batching: Batches multiple relationship loads
- Caching: Caches loaded relationships
- Resolution: Returns resolved relationship data
Scalability Features
Horizontal Scaling
- Automatic Sharding: Data is automatically distributed across shards
- Dynamic Scaling: Add new shards without downtime
- Load Balancing: Distribute queries across available resources
- Peer Distribution: Leverage IPFS network for data distribution
Performance Optimization
- Query Optimization: Automatic query optimization and caching
- Lazy Loading: Load data only when needed
- Batch Operations: Combine multiple operations for efficiency
- Memory Management: Efficient memory usage with automatic cleanup
Data Consistency
- Eventual Consistency: Handle distributed system consistency challenges
- Conflict Resolution: Automatic conflict resolution strategies
- Version Management: Track data versions across the network
- Validation: Ensure data integrity with comprehensive validation
Security Considerations
Access Control
- User-Scoped Data: Automatic isolation of user data
- Permission System: Built-in permission checking
- Validation: Input validation and sanitization
- Audit Logging: Track all data operations
Data Protection
- Encryption: Support for data encryption at rest and in transit
- Privacy: User-scoped databases ensure data privacy
- Network Security: Leverage IPFS and OrbitDB security features
- Key Management: Secure key storage and rotation
Framework Lifecycle
Initialization
- Service Setup: Initialize IPFS and OrbitDB services
- Framework Init: Initialize DebrosFramework with services
- Model Registration: Register application models
- Database Creation: Create necessary databases on-demand
Operation
- Request Processing: Handle user requests through models
- Query Execution: Execute optimized queries across shards
- Data Management: Manage data lifecycle and cleanup
- Event Publishing: Publish relevant events through PubSub
Shutdown
- Graceful Shutdown: Complete ongoing operations
- Data Persistence: Ensure all data is persisted
- Resource Cleanup: Clean up resources and connections
- Service Shutdown: Stop underlying services
Best Practices
Model Design
- Use appropriate scoping (user vs global) based on data access patterns
- Design efficient sharding strategies for your data distribution
- Implement proper validation to ensure data integrity
- Use relationships judiciously to avoid performance issues
Query Optimization
- Use indexes for frequently queried fields
- Implement proper caching strategies
- Use eager loading for predictable relationship access
- Monitor query performance and optimize accordingly
Data Management
- Implement proper migration strategies for schema evolution
- Use appropriate pinning strategies for data availability
- Monitor and manage resource usage
- Implement proper error handling and recovery
This architecture enables DebrosFramework to provide a powerful, scalable, and easy-to-use abstraction over the complexities of distributed systems while maintaining the benefits of decentralization.